数学的四字词语

数学的四字词语:1. 平面几何;2. 立体几何;3. 数学分析;4. 数论算术;5. 微积分学;6. 统计学概率;7. 线性代数;8. 离散数学;9. 拓扑学;10. 微分方程;11. 群论域论;12. 复分析学;13. 核函数理论;14. 代数几何;15. 泛函分析;16. 数学建模;17. 随机过程;18. 最优化理论;19. 图论网络流;20. 数值计算

数学的四字词语 相关词语和解释

词语拼音/解释
代数学 代数学 代数是研究数、数量、关系、结构与代数方程的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
数学 数学 (学科)数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
丘成桐 丘成桐 丘成桐(Shing-Tung Yau),原籍广东省蕉岭县,1949年出生于广东汕头,同年随父母移居香港,美籍华人,国际知名数学家,菲尔兹奖首位华人得主,美国国家科学院院士、美国艺术与科学院院士、台湾中央研究院院士、中国科学院外籍院士。现任香港中文大学博文讲座教授兼数学科学研究所所长、哈佛大学William Casper Graustein讲座教授、清华大学丘成桐数学科学中心主任。 1969年毕业于香港中文大学崇基学院数学系;1971年获得加州大学伯克利分校数学博士(师从陈省身);1974-1987年任斯坦福大学、普林斯顿高等研究院、加州大学圣地亚哥分校数学教授;1987年起任哈佛大学讲座教授;1993年被选为美国国家科学院院士;1994年成为台湾中央研究院院士和中国科学院外籍院士,同年出任香港中文大学数学科学研究所所长;2003年出任香港中文大学博文讲座教授;2013年起任哈佛大学物理系教授。 丘成桐证明了卡拉比猜想、正质量猜想等,是几何分析学科的奠基人,以他的名字命名的卡拉比-丘流形,是物理学中弦理论的基本概念,对微分几何和数学物理的发展做出了重要贡献。 丘成桐囊括了维布伦几何奖(1981)、菲尔兹奖(1982)、麦克阿瑟奖(1985)、克拉福德奖(1994)、美国国家科学奖(1997)、沃尔夫数学奖(2010)、马塞尔·格罗斯曼奖(2018)等奖项。特别是在1982年度荣获最高数学奖菲尔兹奖,是第一位获得这项被称为“数学界的诺贝尔奖”的华人,也是继陈省身后第二位获得沃尔夫数学奖的华人。
陈省身 陈省身 陈省身(Shiing Shen Chern),1911年10月28日生于浙江嘉兴秀水县,美籍华裔数学大师、20世纪最伟大的几何学家之一,生前曾长期任教于美国加州大学伯克利分校(1960年起)、芝加哥大学(1949-1960年),并在伯克利建立了美国国家数学科学研究所(MSRI)。为了纪念陈省身的卓越贡献,国际数学联盟(IMU)还特别设立了“陈省身奖(Chern Medal)”作为国际数学界最高级别的终身成就奖。 1926年,陈省身进入南开大学数学系。1934年夏,他毕业于清华大学研究院,获硕士学位,成为中国自己培养的第一名数学研究生。1943年发表《闭黎曼流形的高斯-博内公式的一个简单内蕴证明》《Hermitian流形的示性类》。1963年至1964年,陈省身担任美国数学会副主席。1995年陈省身当选为首批中国科学院外籍院士。1999年被聘为嘉兴学院首任名誉院长。 陈省身晚年致力于推进中国数学的发展,在母校天津南开大学创立了陈省身数学研究所,并于2002年促成了四年一度的国际数学家大会(ICM)在中国北京召开(系首次在发展中国家召开)。2004年12月3日19时14分,陈省身在天津医科大学总医院逝世,享年93岁。 2018年,入选改革开放40周年最具影响力的外国专家。
符号逻辑 符号逻辑 符号逻辑又称数理逻辑、理论逻辑。它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 所谓数学方法就是指数学采用的一般方法,包括使用符号和公式,已有的数学成果和方法,特别是使用形式的公理方法。 用数学的方法研究逻辑的系统思想一般追溯到莱布尼茨,他认为经典的传统逻辑必须改造和发展,是之更为精确和便于演算。后人基本是沿着莱布尼茨的思想进行工作的。 简而言之,数理逻辑就是精确化、数学化的形式逻辑。它是现代计算机技术的基础。新的时代将是数学大发展的时代,而数理逻辑在其中将会起到很关键的作用。 逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。也叫做符号逻辑。
矩阵 矩阵 (数学术语)在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵
矩陣 矩阵 (数学术语)在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵
符號邏輯 符号逻辑 符号逻辑又称数理逻辑、理论逻辑。它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 所谓数学方法就是指数学采用的一般方法,包括使用符号和公式,已有的数学成果和方法,特别是使用形式的公理方法。 用数学的方法研究逻辑的系统思想一般追溯到莱布尼茨,他认为经典的传统逻辑必须改造和发展,是之更为精确和便于演算。后人基本是沿着莱布尼茨的思想进行工作的。 简而言之,数理逻辑就是精确化、数学化的形式逻辑。它是现代计算机技术的基础。新的时代将是数学大发展的时代,而数理逻辑在其中将会起到很关键的作用。 逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。也叫做符号逻辑。
变量 变量 (计算机名词)变量来源于数学,是计算机语言中能储存计算结果或能表示值抽象概念。变量可以通过变量名访问。在指令式语言中,变量通常是可变的;但在纯函数式语言(如Haskell)中,变量可能是不可变(immutable)的。在一些语言中,变量可能被明确为是能表示可变状态、具有存储空间的抽象(如在Java和Visual Basic中);但另外一些语言可能使用其它概念(如C的对象)来指称这种抽象,而不严格地定义“变量”的准确外延。 变量 (统计学名词)在初等数学中,变量是表示数字的字母字符,具有任意性和未知性。把变量当作是显式数字一样,对其进行代数计算,可以在单个计算中解决很多问题。 变量的概念也是微积分的基础。通常,函数y = f(x)涉及两个变量y和x,分别表示函数的值和参数。术语“变量”来源于当参数(也称为“函数的变量”)变化时,值相应变化。 在高级数学中,变量是表示数学对象的符号,可以是数字,向量,矩阵,甚至是函数。在这种情况下,变量的原始属性将会消失。 类似地,在计算机科学中,变量是表示计算机存储器中表示的一些值的名称(通常是字母字符或字)。在数学逻辑中,变量是表示理论的未指定术语的符号,或者是理论的对象,在不参考其可能的直观解释的情况下被操纵。
陈景润 陈景润 (中国著名数学家)陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。 1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员,中国科学院原数学研究所研究员。1992年任《数学学报》主编。 1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。 2018年11月,陈景润入选100名改革开放杰出贡献对象。
数理逻辑 数理逻辑 (用数学方法研究逻辑或形式逻辑的学科)形式逻辑形式上符号化、数学化的逻辑,本质上仍属于知性逻辑的范畴。 数理逻辑又称符号逻辑、理论逻辑。它既是数学的一个分支,也是逻辑学的一个分支。是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是基础数学的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。
算术 算术 算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。
圆周率 圆周率 (圆的周长与直径的比值)圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。 圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。 1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
圓周率 圆周率 (圆的周长与直径的比值)圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。 圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。 1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
代數學 代数学 代数是研究数、数量、关系、结构与代数方程的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
算術 算术 算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。
數學 数学 (学科)数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
公式 公式 (数学术语与其它意义的词汇)1、通用格式,用数学符号表示,各个量之间的一定关系(如定律或定理)的式子,能普遍应用于同类事物的方式方法。 2、公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。公式精确定义依赖于涉及到的特定的形式逻辑,但有如下一个非常典型的定义(特定于一阶逻辑): 公式是相对于特定语言而定义的;就是说,一组常量符号、函数符号和关系符号,这里的每个函数和关系符号都带有一个元数(arity)来指示它所接受的参数的数目。
李善兰 李善兰 李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。出生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,是中国近代著名的数学、天文学、力学和植物学家,创立了二次平方根的幂级数展开式,研究各种三角函数,反三角函数和对数函数的幂级数展开式(现称“自然数幂求和公式”),这是李善兰也是19世纪中国数学界最重大的成就。
泛函分析 泛函分析 (数学分支学科)泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
祖冲之 祖冲之 祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。 祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
祖沖之 祖冲之 祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。 祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
极限 极限 (数学术语)“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。 以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。 极限 (汉语词语)极限,是指无限趋近于一个固定的数值。在高等数学中,极限是一个重要的概念:极限可分为数列极限和函数极限。
收敛 收敛 (数学、经济学名词)收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。 收敛 (汉语词语)收敛,汉语词语, 拼音:shōu liǎn, 意为:1、收获农作物。2.征收租税。3.聚敛;收集。4.归总。5.检点行为,约束身心。6.停止;消失。7.医学用语。谓通过药物作用,使肌体皱缩、腺液分泌减少。8.收殓。
数论 数论 (数学分支)数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。 按研究方法来看,数论大致可分为初等数论和高等数论。初等数论是用初等方法研究的数论,它的研究方法本质上说,就是利用整数环的整除性质,主要包括整除理论、同余理论、连分数理论。高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论、解析数论、计算数论等等。
运筹学 运筹学 (管理类专业基础课)运筹学是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科是应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等相关专业。
極限 极限 (数学术语)“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。 以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。 极限 (汉语词语)极限,是指无限趋近于一个固定的数值。在高等数学中,极限是一个重要的概念:极限可分为数列极限和函数极限。
收斂 收敛 (数学、经济学名词)收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。 收敛 (汉语词语)收敛,汉语词语, 拼音:shōu liǎn, 意为:1、收获农作物。2.征收租税。3.聚敛;收集。4.归总。5.检点行为,约束身心。6.停止;消失。7.医学用语。谓通过药物作用,使肌体皱缩、腺液分泌减少。8.收殓。
數論 数论 (数学分支)数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。 按研究方法来看,数论大致可分为初等数论和高等数论。初等数论是用初等方法研究的数论,它的研究方法本质上说,就是利用整数环的整除性质,主要包括整除理论、同余理论、连分数理论。高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论、解析数论、计算数论等等。
運籌學 运筹学 (管理类专业基础课)运筹学是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科是应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等相关专业。
角度 角度 (数学名词)数学概念 两条相交直线中的任何一条与另一条相叠合时必须转动的量的量度,转动在这两条直线的所在平面上并绕交点进行。 角度是用以量度角的单位,符号为°。一周角分为360等份,每份定义为1度(1°)。 采用360这数字,因为它容易被整除。360除了1和自己,还有22个真因数,包括了7以外从2到10的数字,所以很多特殊的角的角度都是整数。 实际应用中,整数的角度已足够准确。有时需要更准确的量度,如天文学或地球的经度和纬度,除了用小数表示度,还可以把度细分为分和秒:1度为60分(60′),1分为60秒(60″)。例如40.1875° = 40°11′15″。要更准确便用小数表示秒,而不再加设单位。 角度 (汉语词语)角度,是一个数学名词,表示角的大小的量,通常用度或弧度来表示。 也可用来比喻看事情的出发点。
优选法 优选法 优选法(optimization method)以数学原理为指导,合理安排试验,以尽可能少的试验次数尽快找到生产和科学实验中最优方案的科学方法。即最优化方法。实际工作中的优选问题 ,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理或动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。
函数 函数 (数学函数)函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
积分 积分 (数学术语)积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。 积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。 积分 (汉语词语)商家为了刺激消费者消费,是一种变相营销的手段。比如,满多少积分可换购某样商品。积分获取的途径:购物,做任务,参加某种活动。
優選法 优选法 优选法(optimization method)以数学原理为指导,合理安排试验,以尽可能少的试验次数尽快找到生产和科学实验中最优方案的科学方法。即最优化方法。实际工作中的优选问题 ,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理或动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。
積分 积分 (数学术语)积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。 积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。 积分 (汉语词语)商家为了刺激消费者消费,是一种变相营销的手段。比如,满多少积分可换购某样商品。积分获取的途径:购物,做任务,参加某种活动。
函數 函数 (数学函数)函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。 函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
指数 指数 (数学用语)指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
指數 指数 (数学用语)指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
毕达哥拉斯 毕达哥拉斯 毕达哥拉斯(Pythagoras,约公元前580年—约前500(490)年)古希腊数学家、哲学家。 毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。 因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——巴比伦和印度,以及埃及(有争议),吸收了美索不达米亚文明和印度文明(公元前480年)的文化。 后来他就到意大利的南部传授数学及宣传他的哲学思想,并和他的信徒们组成了一个所谓“毕达哥拉斯学派”的政治和宗教团体。 毕达哥拉斯是比同时代中一些开坛授课的学者进步一点;因为他容许妇女(当然是贵族妇女而非奴隶女婢)来听课。他认为妇女也是和男人一样有求知的权利,因此他的学派中就有十多名女学者。这是其他学派所没有的现象。 传说他是一个非常优秀的教师,他认为每一个人都该懂些几何。有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人建议:如果这人能学懂一个定理,那么就给他三块银币。这个人看在钱的份上就和他学几何了,可是过了一个时期,这学生对几何产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达哥拉斯把他以前给那学生的钱全部收回了。
除号 除号 (符号)除号,是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。
方程 方程 方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。 通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。 在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
理科 理科 理科(science departments)一般是指自然科学、应用科学以及数理逻辑的统称,与文科相对立。理科学科主要有:数学、物理学、化学、生物学、地理学、计算机软件应用、技术与设计实践等。理科的诞生与发展是人类智慧发展的结果,标志着人类真正懂得了思考自然,因此理科的发展也是人类科学与自然思维发展的关键。国内的较知名理科大学有:中国科学技术大学、北京大学、清华大学、南京大学、复旦大学等。
幂级数 幂级数 幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
正数 正数 正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写,负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。在数轴线上,正数都在0的右侧,最早记载正数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。
行列式 行列式 行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
差分 差分 差分,又名差分函数或差分运算,差分的结果反映了离散量之间的一种变化,是研究离散数学的一种工具,常用函数差近似导数。 差分在数学、物理和信息学中应用很广泛,模拟电路中有差分放大电路一说。差分运算,相应于微分运算。
除號 除号 (符号)除号,是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。
九数 九数 《周礼》的“九数”指的是《周礼·地官司徒·保氏》所言:“保氏掌谏王恶而养国子以道,乃教之六艺:一曰五礼,二曰六乐,三曰五射,四曰五御,五曰六书,六曰九数。”这就是古代教育必须学习的礼、乐、射、御、书、数六门功课,“九数”是指“数”学这门功课有九个细目。关于“九数”的细目,《周礼》并没有列出。东汉的郑玄在他的《周礼注疏·地官司徒·保氏》中引郑司农(郑众)所言:“九数:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要;今有重差、夕桀、勾股也。”
正數 正数 正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写,负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。在数轴线上,正数都在0的右侧,最早记载正数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。
冪級數 幂级数 幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
代数 代数 代数:数学分支 代数:教师
极值 极值 在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。 如集合理论中定义的,集合的最大值和最小值分别是集合中最大和最小的元素。 无限无限集,如实数集合,没有最小值或最大值。 极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。
耐普尔 耐普尔 英国数学家。圣安德鲁斯大学肄业。1614年著《奇妙的对数规律的描述》,叙述了对数的性质,后又详细说明了对数计算和制造对数表的方法,对简化数字计算起了重要作用。还创造了球面三角中的“耐普尔圆部法则”和用于乘除运算的“耐普尔筹算法”。
小数点 小数点 (数学符号)小数点,数学符号,写作“.”,用于在十进制中隔开整数部分和小数部分。小数点尽管小,但是作用极大。我们时刻都不可忽略这个小小的符号。因为这个不起眼的差错,人类酿过一个又一个悲剧。正可谓“差之毫厘,谬以千里”。
线性规划 线性规划 线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
代數 代数 代数:数学分支 代数:教师
程大位 程大位 程大位(1533~1606),明代商人、珠算发明家。字汝思,号宾渠,汉族,南直隶徽州府休宁县率口(今黄山市屯溪)人。少年时,读书极为广博﹐对书法和数学颇感兴趣,一生没有做过官。20岁起便在长江中﹑下游一带经商。因商业计算的需要,他随时留心数学,遍访名师,搜集很多数学书籍,刻苦钻研,时有心得。约40岁时回家,专心研究,参考各家学说,加上自己的见解,于60岁时完成其杰作《直指算法统宗》(简称《算法统宗》)。诚如英国李约瑟所说:“在明代数学家当中,最引人注目的是程大位”,“在程大位《直指算法统宗》以前,没有任何关于近代珠算算盘的完整叙述”,可谓集成计算的鼻祖。
線性規劃 线性规划 线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
九數 九数 《周礼》的“九数”指的是《周礼·地官司徒·保氏》所言:“保氏掌谏王恶而养国子以道,乃教之六艺:一曰五礼,二曰六乐,三曰五射,四曰五御,五曰六书,六曰九数。”这就是古代教育必须学习的礼、乐、射、御、书、数六门功课,“九数”是指“数”学这门功课有九个细目。关于“九数”的细目,《周礼》并没有列出。东汉的郑玄在他的《周礼注疏·地官司徒·保氏》中引郑司农(郑众)所言:“九数:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要;今有重差、夕桀、勾股也。”

其它词语热搜

* 数学的四字词语:1. 平面几何;2. 立体几何;3. 数学分析;4. 数论算术;5. 微积分学;6. 统计学概率;7. 线性代数;8. 离散数学;9. 拓扑学;10. 微分方程;11. 群论域论;12. 复分析学;13. 核函数理论;14. 代数几何;15. 泛函分析;16. 数学建模;17. 随机过程;18. 最优化理论;19. 图论网络流;20. 数值计算